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7.1 Introduction to Functions

In this lecture:

qPart 1: What is a func8on
qPart 2: Equality of Func5ons
qPart 3: Examples of Func5ons
qPart 3: Checking Well Defined Func5ons
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Many issues in life can be mathematized and used as functions:
• Div(x), mod(x), ….
• FatherOf(x), TruthTable (x) 

• In this lecture we focus on discrete functions 

Motivation
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A function is a relation from X, the domain, to Y, the co-
domain, that satisfies 2 properties: 1) Every element is related 
to some element in Y; 2) No element in X is related to more 
than one element in Y

Domain Co-domain

What is a Function

384 Chapter 7 Functions

• Definition

A function f from a set X to a set Y, denoted f : X → Y , is a relation from X , the
domain, to Y , the co-domain, that satisfies two properties: (1) every element in X
is related to some element in Y , and (2) no element in X is related to more than one
element in Y . Thus, given any element x in X , there is a unique element in Y that
is related to x by f . If we call this element y, then we say that “ f sends x to y” or

“ f maps x to y” and write x
f→ y or f : x → y. The unique element to which f sends

x is denoted

f (x ) and is called f of x , or
the output of f for the input x , or
the value of f at x , or
the image of x under f .

The set of all values of f taken together is called the range of f or the image of X
under f. Symbolically,

range of f = image of X under f = {y ∈ Y | y = f (x), for some x in X}.

Given an element y in Y , there may exist elements in X with y as their image. If
f (x) = y, then x is called a preimage of y or an inverse image of y. The set of all
inverse images of y is called the inverse image of y. Symbolically,

the inverse image of y = {x ∈ X | f (x) = y}.

!
Caution! Use f (x) to
refer to the value of the
function f at x . Generally
avoid using f (x) to refer
to the function f itself.

In some mathematical contexts, the notation f (x) is used to refer both to the value
of f at x and to the function f itself. Because using the notation this way can lead to
confusion, we avoid it whenever possible. In this book, unless explicitly stated otherwise,
the symbol f (x) always refers to the value of the function f at x and not to the function
f itself.
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Johann Peter Gustav
Lejeune Dirichlet
(1805–1859)

The concept of function was developed over a period of centuries. A definition similar
to that given above was first formulated for sets of numbers by the German mathematician
Lejeune Dirichlet (DEER-ish-lay) in 1837.

Arrow Diagrams
Recall from Section 1.3 that if X and Y are finite sets, you can define a function f from
X to Y by drawing an arrow diagram. You make a list of elements in X and a list of
elements in Y , and draw an arrow from each element in X to the corresponding element
in Y , as shown in Figure 7.1.1.

x1

x2

x3

x4

y1

y2

y3

y4

y5

X Yf

Figure 7.1.1

This arrow diagram does define a function because

1. Every element of X has an arrow coming out of it.

2. No element of X has two arrows coming out of it
that point to two different elements of Y .
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SonOf

نیرصنع نیب ةقلاع
 نوكی نا بجی لاجملا يف رصنع لك
.لباقملا لاجملا يف ةدحاو ةروص ھل
 ھل دجوی لا لاجملا يف رصنع دجوی لا

لباقملا لاجملا يف ةروص

ءانبأ ءابا
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Example

7.1 Functions Defined on General Sets 385

Example 7.1.1 Functions and Nonfunctions

Which of the arrow diagrams in Figure 7.1.2 define functions from X = {a, b, c} to
Y = {1, 2, 3, 4}?

a
b
c

1
2
3
4

a
b
c

1
2
3
4

a
b
c

1
2
3
4

(a) (b) (c)

Figure 7.1.1

Solution Only (c) defines a function. In (a) there is an element of X , namely b, that is not
sent to any element of Y ; that is, there is no arrow coming out of b. And in (b) the element
c is not sent to a unique element of Y ; that is, there are two arrows coming out of c, one
pointing to 2 and the other to 3. ■

Example 7.1.2 A Function Defined by an Arrow Diagram

Let X = {a, b, c} and Y = {1, 2, 3, 4}. Define a function f from X to Y by the arrow
diagram in Figure 7.1.3.

a
b
c

1
2
3
4

X Yf

Figure 7.1.1

a. Write the domain and co-domain of f .

b. Find f (a), f (b), and f (c).

c. What is the range of f ?

d. Is c an inverse image of 2? Is b an inverse image of 3?

e. Find the inverse images of 2, 4, and 1.

f. Represent f as a set of ordered pairs.

Solution

a. domain of f = {a, b, c}, co-domain of f = {1, 2, 3, 4}
b. f (a) = 2, f (b) = 4, f (c) = 2

c. range of f = {2, 4}
d. Yes, No

e. inverse image of 2 = {a, c}
inverse image of 4 = {b}
inverse image of 1 = ∅ (since no arrows point to 1)

f. {(a, 2), (b, 4), (c, 2)} ■

In Example 7.1.2 there are no arrows pointing to the 1 or the 3. This illustrates the
fact that although each element of the domain of a function must have an arrow pointing
out from it, there can be elements of the co-domain to which no arrows point. Note also
that there are two arrows pointing to the 2—one coming from a and the other from c.

In Section 1.3 we gave a test for determining whether two functions with the same
domain and co-domain are equal, saying that the test results from the definition of a
function as a binary relation. We formalize this justification in Theorem 7.1.1.
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a. Write the domain and co-domain of f .
b. Find f (a), f (b), and f (c).
c. What is the range of f?
d. Is c an inverse image of 2? Is b an inverse image of 3? 
e. Find the inverse images of 2, 4, and 1.
f. Represent f as a set of ordered pairs.

Let X = {a, b, c} and Y = {1,2,3,4}. Define a function f from X to Y
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Example

Which are functions?
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(a) b is not sent to any element in of Y 
(b) The element c isn’t sent to a unique element of Y
(c) Function 
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qPart 2: Equality of Functions
qPart 3: Examples of Functions
qPart 3: Checking Well Defined Functions
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Equality of Functions

Let J3 = {0, 1, 2}, and define functions f and g from J3 to J3 as 
follows: For all x in J3

f(x) = (x2 + x + 1) mod 3    and g(x) = (x + 2)2 mod 3.

Does f = g?

386 Chapter 7 Functions

Theorem 7.1.1 A Test for Function Equality

If F : X → Y and G: X → Y are functions, then F = G if, and only if, F(x) = G(x)

for all x ∈ X .

Proof:

Suppose F : X → Y and G: X → Y are functions, that is, F and G are binary rela-
tions from X to Y that satisfy the two additional function properties. Then F and G
are subsets of X × Y , and for (x, y) to be in F means that y is the unique element
related to x by F , which we denote as F(x). Similarly, for (x, y) to be in G means
that y is the unique element related to x by G, which we denote as G(x).

Now suppose that F(x) = G(x) for all x ∈ X . Then if x is any element of X ,

(x, y) ∈ F ⇔ y = F(x)⇔ y = G(x) ⇔ (x, y) ∈ G because F(x) = G(x)

So F and G consist of exactly the same elements and hence F = G.

Conversely, if F = G, then for all x ∈ X ,

y = F(x)⇔ (x, y) ∈ F ⇔ (x, y) ∈ G ⇔ y = G(x) because F and G consist
of exactly the same
elementsThus, since both F(x) and G(x) equal y, we have that

F(x) = G(x).

Note So (x, y) ∈ F
⇔ y = F(x) and
(x, y) ∈ G ⇔ y = G(x).

Example 7.1.3 Equality of Functions

a. Let J3 = {0 , 1, 2 }, and define functions f and g from J3 to J3 as follows: For all x
in J3,

f (x) = (x 2 + x + 1) mod 3 and g (x) = (x + 2 )2 mod 3.

Does f = g ?

b. Let F: R → R and G: R → R be functions. Define new functions F + G: R → R
and G + F: R → R as follows: For all x ∈ R,

(F + G)(x) = F(x) + G(x) and (G + F)(x) = G(x) + F(x).

Does F + G = G + F?

Solution

a. Yes, the table of values shows that f (x) = g (x) for all x in J3.

x x 2 + x + 1 f (x ) = (x 2 + x + 1) mod 3 (x + 2)2 g (x ) = (x + 2)2 mod 3
0 1 1 mod 3 = 1 4 4 mod 3 = 1
1 3 3 mod 3 = 0 9 9 mod 3 = 0
2 7 7 mod 3 = 1 16 16 mod 3 = 1

b. Again the answer is yes. For all real numbers x ,

(F + G)(x) = F(x) + G(x) by definition of F + G

= G(x) + F(x) by the commutative law for addition of real numbers

= (G + F)(x) by definition of G + F

Hence F + G = G + F . ■
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Equality of Func1ons

Let F: R → R and G: R → R be functions. Define new functions 
F + G: R → R and G + F: R→R as follows: For all x ∈R,

(F + G)(x) = F(x) + G(x) and   (G + F)(x) = G(x) + F(x). 

Does F + G = G + F? 
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Examples of Functions
Identity Function

Function that always have the input is the same as the outputs, 
are called identity functions  

Examples of identity functions?

Identity function send each element of X to the element that is 
identical to it.

IX(x) = x for all x in X.
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Solution

a. Yes. Because the absolute value of a number equals the square root of its square,
xI = x2 forallx e R.

Hence f = g.
b. Again the answer is yes. For all real numbers x,

(F + G)(x) = F(x) + G(x) by definition of F + G

= G(x) + F(x) by the commutative law for addition of real numbers

= (G + F) (x) by definition of G + F

Hence F + G = G + F. R

Examples of Functions
The following examples illustrate some of the wide variety of different types of functions.

Example 7.1.5 The Identity Function on a Set
Given a set X, define a function ix from X to X by

ix(x)=x forallxinX.

The function ix is called the identity function on X because it sends each element of X to
the element that is identical to it. Thus the identity function can be pictured as a machine
that sends each piece of input directly to the output chute without changing it in any way.

Let X be any set and suppose that akj and O(z) are elements of X. Find ix(ak) and
ix((Z))

Solution Whatever is input to the identity function comes out unchanged, so ix (alj) = adj
and ix (O(z)) =0(z).

Example 7.1.6 Sequences
The formal definition of sequence specifies that a sequence is a function defined on the set
of integers that are greater than or equal to a particular integer. For example, the sequence
denoted

1 1 1 1 ()n

2' 3 4 5 n + 1

can be thought of as the function f from the nonnegative integers to the real numbers
that associates O 1, lI- 2' , 3 + -, 4 5, and, in general, n- s- In2 3-. 4~. 4.5 n n+I*
other words, f: Znonneg R is the function defined as follows:

Send each integer n > O to f (n) = .

In fact, there are many functions that can be used to define a given sequence. For
instance, express the sequence above as a function from the set of positive integers to the
set of real numbers.

Solution Define g: Z+ -- R by g(n) = n for each n E Z+. Then g(l) = 1, g( 2 ) =n

-2 g(3) = 4, and in general
+1=( ) l= )=

g(n± +1)= - = f(n).U
n +l n +l

R

Examples of Func2ons
Sequences 

An infinite sequence is a function defined on set of integers that 
are greater than or equal to a particular integer.

E.g., Define the following sequence as a function from the set of 
positive integers to the set of real numbers

16,

Draw an arrow diagram for F as follows: 

7.1 Functions Defined on General Sets 395

Example 7.1.7 A Function Defined on a Power Set
Recall from Section 5.3 that 9(A) denotes the set of all subsets of the set A. Define a
function F: -({a, b, c}) -* Znonneg as follows: For each X E Y({a, b, c}),

F(X) = the number of elements in X.

Draw an arrow diagram for F.

Solution

.

Example 7.1.8 Function Defined on a Set of Strings
In automata theory, the fundamental objects are sets of strings. Let S be the set of all
strings of a's and b's, and let E represent the null string (the "string" with no characters).
Define a function g: S -* Z as follows: For each string s E S,

g(s) = the number of a's in s.

Find the following.

a. g(c) b. g(bb) c. g(ababb) d. g(bbbaa)

Solution
a. 0 b. 0 c. 2 d. 2 D

Example 7.1.9 The Logarithmic Function
Let b be a positive real number. For each positive real number x, the logarithm with base
b of x, written logb x, is the exponent to which b must be raised to obtain x.* Symbolically,

logbx=y X by=x.

The logarithmic function with base b is the function from R+ to R that takes each
positive real number x to logb x. Find the following:

a. log3 9 b. 10g 2 (l) c. loglo(l) d. 1og 2(2m )

Solution

a. 1og 3 9 = 2 because 3 2 = 9. a.~b logg3) 9bcue =- ease3b. 1g2(O ) =-I because 2-' =

c. log1 0 (l) = 0 because 100 = 1.

d. 1og 2 (2m) = m because the exponent to which 2 must be raised to obtain 2m is m. X

*It is not obvious, but it is true, that for any positive real number x there is a unique real number y
such that by = x. Most calculus books contain a discussion of this result.
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388 Chapter 7 Functions

Solution

∅
{a}

{b}

{c}

{a, b}

{a, c}

0

1

2

3

4

5

{b, c}

{a, b, c}

({a, b, c}) Znonneg

■

Note It is customary to
omit one set of
parentheses when
referring to functions
defined on Cartesian
products. For example,
we write M(a, b) rather
than M((a, b)).

Example 7.1.7 Functions Defined on a Cartesian Product

Define functions M : R× R → R and R: R× R → R× R as follows: For all ordered
pairs (a, b) of integers,

M(a, b) = ab and R(a, b) = (−a, b).

Then M is the multiplication function that sends each pair of real numbers to the product
of the two, and R is the reflection function that sends each point in the plane that corre-
sponds to a pair of real numbers to the mirror image of the point across the vertical axis.
Find the following:

a. M(−1,−1) b. M
(

1
2 ,

1
2

)
c. M(

√
2 ,
√

2 )

d. R(2 , 5 ) e. R(−2 , 5 ) f. R(3 ,−4)

Solution

a. (−1)(−1) = 1 b. (1/2 )(1/2 ) = 1/4 c.
√

2 ·
√

2 = 2
d. (−2 , 5 ) e. (−(−2 ), 5 ) = (2 , 5 ) f. (−3 ,−4) ■

• Definition Logarithms and Logarithmic Functions

Let b be a positive real number with b ̸= 1. For each positive real number x , the
logarithm with base b of x, written logb x, is the exponent to which b must be
raised to obtain x . Symbolically,

logb x = y ⇔ by = x .

The logarithmic function with base b is the function from R+ to R that takes each
positive real number x to logb x .

Note It is not obvious,
but it is true, that for any
positive real number x
there is a unique real
number y such that
by = x . Most calculus
books contain a
discussion of this result.

Example 7.1.8 The Logarithmic Function with Base b

Find the following:

a. log3 9 b. log2

(
1
2

)
c. log10 (1) d. log2 (2

m) (m is any real number)

e. 2 log2 m(m > 0 )
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Examples of Functions
Cartesian product

M is the multiplication function that sends each pair of real numbers 
to the product of the two. R is the reflection function that sends each 
point in the plane that corresponds to a pair of real numbers to the 
mirror image of the point across the vertical axis. 

Define functions M: R × R → R and R: R × R → R × R as follows: 
For all ordered pairs (a, b) of integers, 

M(a,b) = ab and R(a,b) = (−a,b). 

Find the following: 

a. M(−1,−1) 

b. M(½, ½)

c. M(√2, √2)

d. R(2,5) 

e. R(-2,5)

e. R(3,-4)

=1

=2

= ¼

=(-2,5)

=(2,5)

=(-3,-4)

18,

g: S à Z

g(s) = the number of a's in s.

Find the following.
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Example 7.1.7 A Function Defined on a Power Set
Recall from Section 5.3 that 9(A) denotes the set of all subsets of the set A. Define a
function F: -({a, b, c}) -* Znonneg as follows: For each X E Y({a, b, c}),

F(X) = the number of elements in X.

Draw an arrow diagram for F.

Solution

.

Example 7.1.8 Function Defined on a Set of Strings
In automata theory, the fundamental objects are sets of strings. Let S be the set of all
strings of a's and b's, and let E represent the null string (the "string" with no characters).
Define a function g: S -* Z as follows: For each string s E S,

g(s) = the number of a's in s.

Find the following.

a. g(c) b. g(bb) c. g(ababb) d. g(bbbaa)

Solution
a. 0 b. 0 c. 2 d. 2 D

Example 7.1.9 The Logarithmic Function
Let b be a positive real number. For each positive real number x, the logarithm with base
b of x, written logb x, is the exponent to which b must be raised to obtain x.* Symbolically,

logbx=y X by=x.

The logarithmic function with base b is the function from R+ to R that takes each
positive real number x to logb x. Find the following:

a. log3 9 b. 10g 2 (l) c. loglo(l) d. 1og 2(2m )

Solution

a. 1og 3 9 = 2 because 3 2 = 9. a.~b logg3) 9bcue =- ease3b. 1g2(O ) =-I because 2-' =

c. log1 0 (l) = 0 because 100 = 1.

d. 1og 2 (2m) = m because the exponent to which 2 must be raised to obtain 2m is m. X

*It is not obvious, but it is true, that for any positive real number x there is a unique real number y
such that by = x. Most calculus books contain a discussion of this result.

Examples of Functions
String Functions
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Examples of Functions
Logarithmic functions 

• log3 9  
• log2 (1/2)  
• log10(1) 
• log2(2m) 

• 2log2 m
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Solution
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= 2   because 32 = 9. 
= -1 because 2-1 = ½.
= 0 because 100 = 1.
= m because the exponent to which 2 must be raised to 
obtain 2m is m.
= m because log2 m is the exponent to which 2 must be 
raised to obtain m.
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and 1’s of length n. Define a function H : S n × S n → Znonneg as follows: For each pair of
strings (s, t) ∈ S n × S n ,

H(s, t) = the number of positions in which s and t have different values.
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Richard Hamming
(1915–1998)

Thus, letting n = 5, H(11111, 00000) = 5

because 11111 and 00000 differ in all five positions, whereas

H(11000, 00000) = 2

because 11000 and 00000 differ only in the first two positions.

a. Find H(00101, 01110). b. Find H(10001, 01111).

Solution

a. 3 b. 4 ■

Boolean Functions
In Section 2.4 we showed how to find input/output tables for certain digital logic
circuits. Any such input/output table defines a function in the following way: The ele-
ments in the input column can be regarded as ordered tuples of 0’s and 1’s; the set of all
such ordered tuples is the domain of the function. The elements in the output column are
all either 0 or 1; thus {0, 1} is taken to be the co-domain of the function. The relation-
ship is that which sends each input element to the output element in the same row. Thus,
for instance, the input/output table of Figure 7.1.4(a) defines the function with the arrow
diagram shown in Figure 7.1.4(b).

More generally, the input/output table corresponding to a circuit with n input wires
has n input columns. Such a table defines a function from the set of all n-tuples of 0’s and
1’s to the set {0, 1}.

Input Output

P Q R S

1 1 1 1

1 1 0 1

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 0

0 0 0 0

(a)

(1, 1, 1)
(1, 1, 0)
(1, 0, 1)
(1, 0, 0)
(0, 1, 1)
(0, 1, 0)
(0, 0, 1)
(0, 0, 0)

1

0

(b)
Figure 7.1.2 Two Representations of a Boolean Function

• Definition

An (n-place) Boolean function f is a function whose domain is the set of all ordered
n-tuples of 0’s and 1’s and whose co-domain is the set {0, 1}. More formally, the
domain of a Boolean function can be described as the Cartesian product of n copies
of the set {0, 1}, which is denoted {0, 1}n . Thus f : {0, 1}n → {0, 1}.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

390 Chapter 7 Functions

and 1’s of length n. Define a function H : S n × S n → Znonneg as follows: For each pair of
strings (s, t) ∈ S n × S n ,

H(s, t) = the number of positions in which s and t have different values.

Co
ur

te
sy

of
U

.S
.N

av
al

Ac
ad

em
y

Richard Hamming
(1915–1998)

Thus, letting n = 5, H(11111, 00000) = 5

because 11111 and 00000 differ in all five positions, whereas

H(11000, 00000) = 2

because 11000 and 00000 differ only in the first two positions.

a. Find H(00101, 01110). b. Find H(10001, 01111).

Solution

a. 3 b. 4 ■

Boolean Functions
In Section 2.4 we showed how to find input/output tables for certain digital logic
circuits. Any such input/output table defines a function in the following way: The ele-
ments in the input column can be regarded as ordered tuples of 0’s and 1’s; the set of all
such ordered tuples is the domain of the function. The elements in the output column are
all either 0 or 1; thus {0, 1} is taken to be the co-domain of the function. The relation-
ship is that which sends each input element to the output element in the same row. Thus,
for instance, the input/output table of Figure 7.1.4(a) defines the function with the arrow
diagram shown in Figure 7.1.4(b).

More generally, the input/output table corresponding to a circuit with n input wires
has n input columns. Such a table defines a function from the set of all n-tuples of 0’s and
1’s to the set {0, 1}.

Input Output

P Q R S

1 1 1 1

1 1 0 1

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 0

0 0 0 0

(a)

(1, 1, 1)
(1, 1, 0)
(1, 0, 1)
(1, 0, 0)
(0, 1, 1)
(0, 1, 0)
(0, 0, 1)
(0, 0, 0)

1

0

(b)
Figure 7.1.2 Two Representations of a Boolean Function

• Definition

An (n-place) Boolean function f is a function whose domain is the set of all ordered
n-tuples of 0’s and 1’s and whose co-domain is the set {0, 1}. More formally, the
domain of a Boolean function can be described as the Cartesian product of n copies
of the set {0, 1}, which is denoted {0, 1}n . Thus f : {0, 1}n → {0, 1}.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Examples of Functions
Boolean Functions
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7.1 Introduction to Functions
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Checking Whether a Function Is Well Defined
A function is not well defined if it fails to satisfy at least one of 
the requirements of being a function

Example:
Define a function f : R → R by specifying that for all real 
numbers x, f(x) is the real number y such that x2+y2 =1. 

There are two reasons why this function is not well defined:
For almost all values of x either (1) there is no y that satisfies 
the given equation or (2) there are two different values of y that 
satisfy the equation

Consider when x=2 
Consider when x=0

Well-defined Func-ons
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Checking Whether a Function Is Well Defined

Is f a well defined function?

Well-defined Functions

7.1 Functions Defined on General Sets 391

Example 7.1.11 A Boolean Function

Consider the three-place Boolean function defined from the set of all 3-tuples of 0’s and
1’s to {0, 1} as follows: For each triple (x1, x2 , x3) of 0’s and 1’s,

f (x1, x2 , x3) = (x1 + x2 + x3) mod 2 .

Describe f using an input/output table.

Solution f (1, 1, 1) = (1 + 1 + 1) mod 2 = 3 mod 2 = 1

f (1, 1, 0) = (1 + 1 + 0) mod 2 = 2 mod 2 = 0

The rest of the values of f can be calculated similarly to obtain the following table.

Input Output

x1 x2 x3 (x1 + x2 + x3) mod 2

1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

0 0 0 0
■

Checking Whether a Function Is Well Defined
It can sometimes happen that what appears to be a function defined by a rule is not really
a function at all. To give an example, suppose we wrote, “Define a function f : R → R
by specifying that for all real numbers x ,

f (x) is the real number y such that x2 + y2 = 1.

There are two distinct reasons why this description does not define a function. For almost
all values of x , either (1) there is no y that satisfies the given equation or (2) there are
two different values of y that satisfy the equation. For instance, when x = 2, there is no
real number y such that 22 + y2 = 1, and when x = 0, both y = −1 and y = 1 satisfy
the equation 02 + y2 = 1. In general, we say that a “function” is not well defined if it
fails to satisfy at least one of the requirements for being a function.

Example 7.1.12 A Function That Is Not Well Defined

Recall that Q represents the set of all rational numbers. Suppose you read that a function
f : Q → Z is to be defined by the formula

f
(m

n

)
= m for all integers m and nwith n ̸= 0.

That is, the integer associated by f to the number m
n is m. Is f well defined? Why?

Solution The function f is not well defined. The reason is that fractions have more than
one representation as quotients of integers. For instance, 1

2 = 3
6 . Now if f were a function,
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defines this formula:

No, Example:
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Checking Whether a Func0on or not

Y= BortherOf(x)
Y= Parent Of(x)
Y= SonOf(x)
Y= FatherOf(x)
Y= Wife Of(x)
.
.
.

Well-defined Functions


