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Introduction to Functions

In this lecture:

dupart 1: What is a function

Part 2: Equality of Functions
I Part 3: Examples of Functions
I Part 3: Checking Well Defined Functions

Motivation

Many issues in life can be mathematized and used as functions:
* Div(x), mod(x), ....

* FatherOf(x), TruthTable (x)

* In this lecture we focus on discrete functions

INPUT x
\/

FUNCTION f:

v
OUTPUT f(x)
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What is a Function
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A function is a relation from X, the domain, to Y, the co-
domain, that satisfies 2 properties: 1) Every element is related
to some element in Y; 2) No element in X is related to more
than one element in Y

5
Function Definition
A function f from a set X to a set Y, denoted f: X — Y, is a relation from X, the
domain, to Y, the co-domain, that satisfies two properties: (1) every element in X
is related to some element in Y, and (2) no element in X is related to more than one
element in Y. Thus, given any element x in X, there is a unique element in Y that
is related to x by f. If we call this element y, then we say that “f sends x to y” or
“f maps x to y”’ and write x EA yor f:x — y. The unique element to which f sends
x is denoted
f(x) andis called fofx, or

the output of f for the input x, or

the value of f at x, or

the image of x under f.
The set of all values of f taken together is called the range of f or the image of X
under f. Symbolically,

range of f = image of X under f ={y € Y |y = f(x), for some x in X}.
Given an element y in Y, there may exist elements in X with y as their image. If
f(x) =y, then x is called a preimage of y or an inverse image of y. The set of all
inverse images of y is called the inverse image of y. Symbolically,
the inverse image ofy = {x € X | f(x) = y}. 6




Example

Let X={a,b,c}and Y ={1,2,34}. Define a function f from X to Y

a. Write the domain and co-domain of f.

b. Find f (a), f(b), andf(c).

c. What is the range of f?

d. Is ¢ an inverse image of 2? Is b an inverse image of 3?
e. Find the inverse images of 2,4, and 1.

f. Represent f as a set of ordered pairs.

Example

Which are functions?

(©

(a) (b)

11/25/18



Example

Which are functions?

L—

(a) (b)

- 4
(©)
(a) b is not sent to any element in of Y

(b) The element c isn’t sent to a unique element of Y
(c) Function
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Equality of Functions

Theorem 7.1.1 A Test for Function Equality

If F: X — Y and G: X — Y are functions, then F = G if, and only if, F(x) = G(x)
forall x € X.

Example:

Let J5 = {0, 1,2}, and define functions f and g from J3 to J;3 as
follows: For all x in J3
fx) =% +x+1)mod3 and g(x) = (x +2)> mod 3.

Does f=g?

x ‘ X 4x+1 flx)=(x*+x+1)mod 3 | (x42) g(x) = (x+2)"mod 3

0 | | I mod3 = 1 ' 4 dmod3 = |
1 3 Imod3 =0 ‘ 9 9mod3 =0
2 7 Tmod3 =1 16 16mod3 =1

Equal functions
11

Equality of Functions

Theorem 7.1.1 A Test for Function Equality

If F: X — Y and G: X — Y are functions, then F = G if, and only if, F (x) = G(x)
forall x € X.

Example:
Let F: R — R and G: R — R be functions. Define new functions
F+G:R— Rand G+ F: R—R as follows: For all x €R,
F+G)(x)=Fx)+ Gkx) and (G+ F)(x) =G(x) + F(x).

Does F+G=G + F?

(F+G)(x) = F(x)+ G(x) by definition of F + G
=G(x)+ F(x) by the commutative law for addition of real numbers
=(G+ F)(x) by definition of G + F

Hence F+ G =G+ F.
12

’
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Examples of Functions
Identity Function

Function that always have the input is the same as the outputs,
are called identity functions

Identity function send each element of X to the element that is
identical to it.

Iy(x) = x for all x in X.

Examples of identity functions?

14
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Examples of Functions
Sequences

An infinite sequence is a function defined on set of integers that
are greater than or equal to a particular integer.

E.g., Define the following sequence as a function from the set of
positive integers to the set of real numbers

| 11 11 i
b} 2, 3, 47 57 7n+15
f Zronneg _s R n>0

(—1)"
fn) = p——

15

Examples of Functions
Function Defined on a Power Set

Draw an arrow diagram for F as follows:

F: 32({61, b’ C}) —y Znonneg
F(X) = the number of elements in X.
97 ({a, b, C}) Znonneg

16
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Examples of Functions
Cartesian product

Define functions M: R xR - R and R: R xR - R xR as follows:
For all ordered pairs (a, b) of integers,

M(ab)=ab and R(a,b)=(-ab).

M is the multiplication function that sends each pair of real numbers
to the product of the two. R is the reflection function that sends each
point in the plane that corresponds to a pair of real numbers to the
mirror image of the point across the vertical axis.

Find the following:
a. M(-1,-1) =I d.R(2,5) =(-2,5)
b.M(%,%) =Y e. R(-2,5) =(2.5)
c. M(N2,\2) =2 e. R(3,-4) =(-3,-4)

17

Examples of Functions
String Functions

gS>Z

g(s) = the number of a's in s.

Find the following.

a. g(e) b. g(bb) c. glababb) d. g(bbbaa)

18
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Examples of Functions
Logarithmic functions

o Definition Logarithms and Logarithmic Functions

Let b be a positive real number with b % 1. For each positive real number x, the
logarithm with base b of x, written log, x, is the exponent to which b must be
raised to obtain x. Symbolically,

logyax=y & b =x.

The logarithmic function with base b is the function from R* to R that takes each
positive real number x to log,, x.

* logs9 =2 because 32=9.

* log, (1/2) = -1 because 27! = 1.

* log;o(1) =0 because 10°=1.

* logy(2™) = m because the exponent to which 2 must be raised to
obtain 2™ is m.

o Dlog2m = m because log, m is the exponent to which 2 must be
r’aised to obtain m. (19)

\

Examples of Functions
Boolean Functions

e Definition

An (n-place) Boolean function f is a function whose domain is the set of all ordered
n-tuples of 0’s and 1’s and whose co-domain is the set {0, 1}. More formally, the
domain of a Boolean function can be described as the Cartesian product of n copies
of the set {0, 1}, which is denoted {0, 1}". Thus f: {0, 1}* — {0, 1}.

Input Output
(] S

~
=

S O O O == =
S O = = OO =
S = O = O = O =
S O = O =, O = -

10



Mustafa Jarrar: Lecture Notes in Discrete Mathematics.
Birzeit University, Palestine, 2015

Functions
Introduction to Functions

In this lecture:
dPart 1: What is a function
LI Part 2: Equality of Functions

LI Part 3: Examples of Functions

ﬁDPart 3: Checking Well Defined Functions

21

Well-defined Functions
Checking Whether a Function Is Well Defined

A function is not well defined if it fails to satisfy at least one of
the requirements of being a function

Example:
Define a function f: R — R by specifying that for all real
numbers x, f(x) is the real number y such that x>+y? =1.

There are two reasons why this function is not well defined:
For almost all values of x either (1) there is no y that satisfies
the given equation or (2) there are two different values of y that
satisfy the equation

Consider when x=2
Consider when x=0

22
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Well-defined Functions
Checking Whether a Function Is Well Defined

f:Q — Z defines this formula:

f <ﬂ> = m for all integers m and n with n # 0.
n

Is f a well defined function?

No, Example:

23

Well-defined Functions

Checking Whether a Function or not

Y= BortherOf(x)
Y= Parent Of(x)
Y= SonOf(x)

Y= FatherOf(x)
Y= Wife Of(x)

24
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